0%

Transformer架构演进——2025年大模型核心技术发展趋势

最近研究Transformer的演进历程,发现它就像AI领域的DNA,从最初的注意力机制到如今的大规模预训练模型,每一次演进都推动着人工智能的边界…

介绍

  Transformer架构自2017年提出以来,已经成为现代AI系统的基础架构。从最初的序列到序列模型到现在的大型语言模型、多模态模型,Transformer架构经历了多次重大演进。2025年,我们见证了更多创新性的架构改进,包括稀疏注意力、旋转位置编码、FlashAttention优化等。本文将深入探讨Transformer架构的演进历程、当前技术趋势以及未来发展方向。

Transformer核心组件演进

多头注意力机制改进

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
// 新一代高效注意力实现
class EfficientAttention {
constructor(d_model, num_heads, attention_type = 'sparse') {
this.d_model = d_model;
this.num_heads = num_heads;
this.attention_type = attention_type;
this.head_dim = d_model / num_heads;

// 支持多种注意力变体
this.attention_impl = this.selectAttentionImplementation();
}

selectAttentionImplementation() {
switch(this.attention_type) {
case 'sparse':
return new SparseAttention(this.d_model, this.num_heads);
case 'linear':
return new LinearAttention(this.d_model, this.num_heads);
case 'flash':
return new FlashAttention(this.d_model, this.num_heads);
default:
return new StandardAttention(this.d_model, this.num_heads);
}
}

forward(query, key, value, mask = null) {
return this.attention_impl.compute(query, key, value, mask);
}
}

// 稀疏注意力实现
class SparseAttention {
constructor(d_model, num_heads) {
this.d_model = d_model;
this.num_heads = num_heads;
this.top_k = 64; // 只关注top-k个token
}

compute(query, key, value, mask = null) {
// 实现稀疏注意力计算
const scores = this.matmul(query, key.transpose(-2, -1));

// 应用稀疏化 - 只保留top-k个注意力权重
const sparse_scores = this.applySparsity(scores, this.top_k);

if (mask) {
sparse_scores.maskedFill(mask, -Infinity);
}

const weights = this.softmax(sparse_scores);
return this.matmul(weights, value);
}

applySparsity(scores, top_k) {
// 找到top-k个最大的值
const flatScores = scores.flatten(-2);
const topKValues = this.topK(flatScores, top_k);

// 创建稀疏掩码
const mask = this.zerosLike(scores);
mask.scatter_(2, topKValues.indices, 1);

return scores * mask;
}
}

// 线性注意力实现
class LinearAttention {
constructor(d_model, num_heads) {
this.d_model = d_model;
this.num_heads = num_heads;
}

compute(query, key, value, mask = null) {
// 线性注意力:O(n)复杂度而不是O(n²)
// 使用核函数近似注意力计算

// 1. 应用特征映射
const q_prime = this.featureMap(query);
const k_prime = this.featureMap(key);

// 2. 计算累积统计量
const kv_cumsum = this.cumsum(k_prime.unsqueeze(-1) * value.unsqueeze(-2));

// 3. 计算输出
const output = this.matmul(q_prime, kv_cumsum);

// 4. 归一化
const normalizer = this.sum(this.featureMap(key), dim=-2);
const q_normalizer = this.matmul(this.featureMap(query), normalizer.unsqueeze(-1));

return output / (q_normalizer + 1e-6);
}

featureMap(x) {
// 使用ReLU或门控线性单元作为核函数
return this.relu(x);
}
}

位置编码技术革新

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
// 高级位置编码实现
class RotaryPositionEncoding {
constructor(dim) {
this.dim = dim;
this.theta = 10000;
}

computeFreqs(dim) {
// RoPE (Rotary Position Embedding) 实现
const invFreq = this.exp(
-this.arange(0, dim, 2) * (this.log(this.theta) / dim)
);
return invFreq;
}

rotateHalf(x) {
// 将张量分成两半并旋转
const x1 = x.slice(null, null, 0, this.dim / 2);
const x2 = x.slice(null, null, this.dim / 2, this.dim);
return this.cat([-x2, x1], -1);
}

applyRoPE(x, positions) {
// 应用旋转位置编码
const sin, cos = this.getSinCos(positions);
const x_rot = this.rotateHalf(x);

return (x * cos) + (x_rot * sin);
}

getSinCos(positions) {
const freqs = this.outer(positions, this.computeFreqs(this.dim));
return [this.sin(freqs), this.cos(freqs)];
}
}

// 相对位置编码增强
class RelativePositionEncoding {
constructor(max_len, num_heads) {
this.max_len = max_len;
this.num_heads = num_heads;
this.relative_attention_bias = this.initRelativeBias();
}

initRelativeBias() {
// 初始化相对位置偏置矩阵
const bidirectional_max_offset = this.max_len // 2;
return this.randn(
2 * bidirectional_max_offset + 1,
this.num_heads
);
}

computeRelativeAttention(query, key) {
// 计算相对位置注意力
const batch_size, seq_len = query.shape[0], query.shape[1];

// 创建相对位置矩阵
const relative_positions = this.arange(seq_len).unsqueeze(0) -
this.arange(seq_len).unsqueeze(1);

// 映射到预定义范围
const clipped_positions = this.clamp(
relative_positions + this.max_len // 2,
0,
2 * this.max_len // 2
);

// 获取相对注意力权重
const relative_weights = this.relative_attention_bias[clipped_positions];

// 添加到注意力分数中
return query.matmul(key.transpose(-2, -1)) + relative_weights;
}
}

混合专家系统(MoE)优化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
// 先进的MoE实现
class MixtureOfExperts {
constructor(num_experts, expert_dim, capacity_factor = 1.25) {
this.num_experts = num_experts;
this.expert_dim = expert_dim;
this.capacity_factor = capacity_factor;

// 初始化专家网络
this.experts = this.initializeExperts();

// 路由器
this.router = new Router(num_experts);
}

initializeExperts() {
const experts = [];
for (let i = 0; i < this.num_experts; i++) {
experts.push(new Expert(this.expert_dim));
}
return experts;
}

forward(inputs) {
const batch_size, seq_len, hidden_dim = inputs.shape;

// 扁平化输入
const flat_inputs = inputs.reshape(-1, hidden_dim);

// 路由决策
const router_outputs = this.router.route(flat_inputs);
const dispatch_tensor = router_outputs.dispatch_tensor;
const expert_assignment = router_outputs.expert_assignment;

// 专家处理
let expert_outputs = this.processByExperts(
flat_inputs,
dispatch_tensor,
expert_assignment
);

// 重新组装输出
const output = this.assembleOutputs(expert_outputs, dispatch_tensor);

return output.reshape(batch_size, seq_len, hidden_dim);
}

processByExperts(inputs, dispatch_tensor, expert_assignment) {
// 将输入分发到对应的专家
const dispatched_inputs = inputs * dispatch_tensor;

// 每个专家并行处理
const expert_outputs = this.experts.map((expert, idx) => {
const expert_input = dispatched_inputs.slice(
null, null, idx * this.expert_dim, (idx + 1) * this.expert_dim
);
return expert.forward(expert_input);
});

return this.stack(expert_outputs, -1);
}
}

// 高效路由器
class Router {
constructor(num_experts, top_k = 2) {
this.num_experts = num_experts;
this.top_k = top_k;
this.layer_norm = new LayerNorm();
this.router_linear = new Linear(/*hidden_dim*/, num_experts);
}

route(inputs) {
// 归一化输入
const norm_inputs = this.layer_norm(inputs);

// 计算路由权重
const router_logits = this.router_linear(norm_inputs);

// 选择top-k专家
const top_k_weights = this.topK(router_logits, this.top_k);
const top_k_indices = top_k_weights.indices;

// 计算路由权重
const router_weights = this.softmax(router_logits);

// 创建dispatch tensor
const dispatch_tensor = this.createDispatchTensor(
router_weights,
top_k_indices
);

return {
dispatch_tensor: dispatch_tensor,
expert_assignment: top_k_indices
};
}

createDispatchTensor(weights, indices) {
// 创建路由分配张量
let dispatch_tensor = this.zeros_like(weights);

for (let i = 0; i < indices.shape[0]; i++) {
dispatch_tensor[i][indices[i]] = weights[i][indices[i]];
}

return dispatch_tensor;
}
}

// 专家网络
class Expert {
constructor(expert_dim) {
this.expert_dim = expert_dim;
this.ffn = new FeedForwardNetwork(expert_dim);
}

forward(inputs) {
return this.ffn(inputs);
}
}

2025年Transformer新架构

MoE-2架构设计

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
// 2025年MoE-2架构 - 更智能的专家路由
class MoE2Architecture {
constructor(config) {
this.config = config;
this.experts = this.initializeAdvancedExperts();
this.hierarchical_router = new HierarchicalRouter(config);
this.memory_efficient_mechanism = new MemoryEfficientMechanism();
}

initializeAdvancedExperts() {
// 使用不同规模和能力的专家
const experts = [];

// 小专家 - 处理常见模式
for (let i = 0; i < this.config.small_experts; i++) {
experts.push(new SmallExpert(this.config.small_expert_dim));
}

// 大专家 - 处理复杂推理
for (let i = 0; i < this.config.large_experts; i++) {
experts.push(new LargeExpert(this.config.large_expert_dim));
}

// 专业专家 - 处理特定领域
for (let i = 0; i < this.config.domain_experts; i++) {
experts.push(new DomainExpert(this.config.domain_expert_dim, i));
}

return experts;
}

forward(inputs) {
// 层次化路由
const routing_decisions = this.hierarchical_router.makeDecisions(inputs);

// 内存高效处理
const output = this.memory_efficient_mechanism.process(
inputs,
this.experts,
routing_decisions
);

return output;
}
}

// 层次化路由器
class HierarchicalRouter {
constructor(config) {
this.config = config;
this.level_routers = this.buildHierarchy();
}

buildHierarchy() {
// 构建多层路由系统
const hierarchy = [];

// Level 1: 粗粒度路由
hierarchy.push(new CoarseRouter(this.config.num_coarse_experts));

// Level 2: 细粒度路由
hierarchy.push(new FineRouter(this.config.num_fine_experts));

// Level 3: 专业化路由
hierarchy.push(new SpecializedRouter(this.config.num_specialized_experts));

return hierarchy;
}

makeDecisions(inputs) {
let current_input = inputs;
const decisions = [];

for (const router of this.level_routers) {
const decision = router.route(current_input);
decisions.push(decision);

// 根据决策更新输入
current_input = this.updateInput(current_input, decision);
}

return decisions;
}
}

// 内存高效处理机制
class MemoryEfficientMechanism {
constructor() {
this.activation_checkpointing = true;
this.gradient_accumulation = true;
this.tensor_parallelism = true;
}

process(inputs, experts, routing_decisions) {
// 激活检查点 - 减少内存使用
if (this.activation_checkpointing) {
return this.processWithCheckpointing(inputs, experts, routing_decisions);
}

// 张量并行 - 分布式计算
if (this.tensor_parallelism) {
return this.processWithParallelism(inputs, experts, routing_decisions);
}

// 梯度累积 - 降低内存峰值
if (this.gradient_accumulation) {
return this.processWithAccumulation(inputs, experts, routing_decisions);
}

// 默认处理
return this.defaultProcess(inputs, experts, routing_decisions);
}

processWithCheckpointing(inputs, experts, routing_decisions) {
// 实现检查点机制
const checkpoints = [];
let current_output = inputs;

for (let i = 0; i < routing_decisions.length; i++) {
const decision = routing_decisions[i];

// 选择专家
const selected_experts = decision.selected_experts;

// 前向传播
current_output = this.forwardThroughExperts(
current_output,
experts,
selected_experts
);

// 在某些层保存检查点
if (this.shouldSaveCheckpoint(i)) {
checkpoints.push(current_output.clone());
}
}

return current_output;
}

shouldSaveCheckpoint(layer_idx) {
// 智能检查点策略
return layer_idx % 3 === 0; // 每3层保存一次
}
}

长序列处理优化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
// 长序列处理架构
class LongSequenceTransformer {
constructor(config) {
this.config = config;
this.global_attention = new GlobalAttentionModule();
this.local_attention = new LocalAttentionModule();
this.compressed_attention = new CompressedAttentionModule();
this.hierarchical_encoding = new HierarchicalEncodingModule();
}

forward(inputs) {
const batch_size, seq_len, hidden_dim = inputs.shape;

if (seq_len <= this.config.local_window) {
// 短序列 - 使用标准注意力
return this.processShortSequence(inputs);
} else if (seq_len <= this.config.global_limit) {
// 中等长度序列 - 使用局部+全局注意力
return this.processMediumSequence(inputs);
} else {
// 长序列 - 使用压缩和分层处理
return this.processLongSequence(inputs);
}
}

processLongSequence(inputs) {
// 1. 分段处理
const segments = this.segmentSequence(inputs);

// 2. 段内处理
const segment_outputs = segments.map(segment =>
this.processSegment(segment)
);

// 3. 段间交互
const global_output = this.interSegmentProcessing(segment_outputs);

return global_output;
}

segmentSequence(inputs) {
const seq_len = inputs.shape[1];
const segment_size = this.config.segment_size;

const segments = [];
for (let i = 0; i < seq_len; i += segment_size) {
const end = Math.min(i + segment_size, seq_len);
segments.push(inputs.slice(null, i, end));
}

return segments;
}

processSegment(segment) {
// 在段内使用局部注意力
return this.local_attention.forward(segment);
}

interSegmentProcessing(segment_outputs) {
// 段间使用全局注意力
const concatenated = this.concatenateSegments(segment_outputs);
return this.global_attention.forward(concatenated);
}

concatenateSegments(segments) {
// 智能拼接,保留段边界信息
const representations = segments.map((seg, idx) => {
// 添加段标识
const seg_with_id = this.addSegmentId(seg, idx);
return this.hierarchical_encoding.encode(seg_with_id);
});

return this.stack(representations, 1);
}

addSegmentId(inputs, segment_id) {
// 为每个段添加唯一标识
const segment_emb = this.segment_embedding(segment_id);
return inputs + segment_emb;
}
}

// 全局注意力模块
class GlobalAttentionModule {
constructor() {
this.attention = new MultiHeadAttention();
this.compression = new SequenceCompression();
}

forward(inputs) {
// 压缩长序列
const compressed = this.compression.compress(inputs);

// 计算注意力
const attended = this.attention.forward(compressed);

// 解压缩
const output = this.compression.decompress(attended, inputs.shape);

return output;
}
}

// 序列压缩模块
class SequenceCompression {
constructor(compression_ratio = 4) {
this.compression_ratio = compression_ratio;
this.compressor = new Conv1D(1, this.compression_ratio);
this.decompressor = new Conv1D(this.compression_ratio, 1);
}

compress(inputs) {
const batch_size, seq_len, hidden_dim = inputs.shape;

// 重塑为适合卷积的形状
const reshaped = inputs.reshape(batch_size * hidden_dim, 1, seq_len);

// 压缩
const compressed = this.compressor(reshaped);

// 重塑回原始形状
const output_shape = [batch_size, compressed.shape[2], hidden_dim];
return compressed.reshape(output_shape);
}

decompress(compressed, original_shape) {
const batch_size, seq_len, hidden_dim = original_shape;

// 重塑
const reshaped = compressed.reshape(batch_size * hidden_dim, 1, compressed.shape[2]);

// 解压缩
const decompressed = this.decompressor(reshaped);

// 重塑回原始形状
return decompressed.reshape(original_shape);
}
}

实际应用案例

大规模预训练模型优化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// 大模型训练优化策略
class LargeModelTrainingOptimizer {
constructor(model_config) {
this.model_config = model_config;
this.zero_optimizer = new ZeROOptimizer();
this.gradient_compression = new GradientCompression();
this.pipeline_parallelism = new PipelineParallelism();
this.fully_sharded_ddp = new FullyShardedDDP();
}

prepareTraining(model) {
// ZeRO优化 - 减少内存占用
const zero_model = this.zero_optimizer.partition(model);

// 梯度压缩 - 减少通信开销
const compressed_model = this.gradient_compression.wrap(zero_model);

// 流水线并行 - 提高吞吐量
const pipelined_model = this.pipeline_parallelism.wrap(compressed_model);

// 完全分片DDP - 最大化内存效率
const fsharded_model = this.fully_sharded_ddp.wrap(pipelined_model);

return fsharded_model;
}

async trainEpoch(model, dataloader) {
for (const batch of dataloader) {
// 前向传播
const outputs = await model.forward(batch.inputs);

// 计算损失
const loss = this.computeLoss(outputs, batch.targets);

// 反向传播
await this.backward(loss, model);

// 更新参数
await this.optimizer.step();

// 清理梯度
await this.optimizer.zeroGrad();
}
}

async backward(loss, model) {
// 在流水线中进行反向传播
return this.pipeline_parallelism.backward(loss, model);
}

computeLoss(outputs, targets) {
// 使用标签平滑和对比学习
const ce_loss = this.crossEntropy(outputs, targets);
const kl_loss = this.klDivergence(outputs, this.targetDistribution(targets));

return ce_loss * 0.9 + kl_loss * 0.1; // 加权组合
}
}

// ZeRO优化器实现
class ZeROOptimizer {
constructor(stage = 3) {
this.stage = stage; // 0=off, 1=params, 2=grads, 3=params+grads+optimizer_states
}

partition(model) {
// 根据stage划分模型参数
switch(this.stage) {
case 1:
return this.partitionOptimizerStates(model);
case 2:
return this.partitionGradients(model);
case 3:
return this.partitionParameters(model);
default:
return model;
}
}

partitionParameters(model) {
// 将参数、梯度和优化器状态都分片
const world_size = this.getWorldSize();
const rank = this.getRank();

// 为每个进程分配一部分参数
const param_partition = this.createParamPartition(model, rank, world_size);

return new PartitionedModel(model, param_partition, rank, world_size);
}

createParamPartition(model, rank, world_size) {
const partitions = {};

for (const [name, param] of Object.entries(model.parameters)) {
const start_idx = Math.floor((rank / world_size) * param.length);
const end_idx = Math.floor(((rank + 1) / world_size) * param.length);

partitions[name] = param.slice(start_idx, end_idx);
}

return partitions;
}
}

// 梯度压缩
class GradientCompression {
constructor(compression_ratio = 0.1) {
this.compression_ratio = compression_ratio;
}

wrap(model) {
// 包装模型以支持梯度压缩
return new CompressedModel(model, this.compression_ratio);
}
}

class CompressedModel {
constructor(model, compression_ratio) {
this.model = model;
this.compression_ratio = compression_ratio;
}

async backward(loss) {
// 计算梯度
await this.model.backward(loss);

// 压缩梯度
this.compressGradients();

// 同步压缩后的梯度
await this.syncCompressedGradients();
}

compressGradients() {
// 只保留top-k梯度
for (const [name, grad] of Object.entries(this.model.gradients)) {
const flat_grad = grad.flatten();
const k = Math.floor(flat_grad.length * this.compression_ratio);
const top_k = this.topK(flat_grad.abs(), k);

// 创建稀疏梯度
const sparse_grad = this.zeros_like(grad);
sparse_grad[top_k.indices] = grad[top_k.indices];

this.model.gradients[name] = sparse_grad;
}
}
}

推理优化技术

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// 推理优化系统
class InferenceOptimizer {
constructor(model) {
this.model = model;
this.kv_cache = new KVCacheOptimizer();
this.speculative_decoding = new SpeculativeDecoding();
this.quantization = new AdvancedQuantization();
this.compiler = new ModelCompiler();
}

async generate(prompt, max_new_tokens) {
// 初始化KV缓存
const kv_cache = this.kv_cache.initialize(this.model.layers.length);

let current_tokens = this.tokenize(prompt);
const generated_tokens = [];

for (let i = 0; i < max_new_tokens; i++) {
// 使用KV缓存加速
const logits = await this.model.forward(
current_tokens.slice(-1),
kv_cache
);

// 预测下一个token
const next_token = this.sampleNextToken(logits);

// 更新KV缓存
this.kv_cache.update(kv_cache, next_token);

generated_tokens.push(next_token);
current_tokens.push(next_token);

if (next_token === this.eos_token) {
break;
}
}

return this.detokenize(generated_tokens);
}

// 推测解码优化
async speculativeGenerate(prompt, max_new_tokens) {
// 草稿模型快速生成候选
const draft_model = this.createDraftModel();

let current_tokens = this.tokenize(prompt);
const generated_tokens = [];

while (generated_tokens.length < max_new_tokens) {
// 使用草稿模型生成多个候选token
const draft_tokens = await draft_model.generate(
current_tokens,
this.speculate_length
);

// 使用主模型验证
const verified_tokens = await this.verifyTokens(
current_tokens,
draft_tokens
);

generated_tokens.push(...verified_tokens);
current_tokens.push(...verified_tokens);

if (current_tokens.includes(this.eos_token)) {
break;
}
}

return this.detokenize(generated_tokens);
}

async verifyTokens(prefix, candidates) {
// 验证草稿模型生成的tokens
const verified = [];

for (let i = 0; i < candidates.length; i++) {
const extended_prefix = [...prefix, ...candidates.slice(0, i + 1)];

// 使用主模型计算概率
const logits = await this.model.forward(extended_prefix.slice(-1));
const probabilities = this.softmax(logits);

// 检查候选token的概率
const candidate_prob = probabilities[candidates[i]];

if (candidate_prob > this.accept_threshold) {
verified.push(candidates[i]);
} else {
// 重新采样
const new_token = this.sampleNextToken(logits);
verified.push(new_token);
break; // 停止验证后续tokens
}
}

return verified;
}
}

// KV缓存优化
class KVCacheOptimizer {
constructor(max_length = 2048) {
this.max_length = max_length;
this.cache_type = 'paged'; // 或 'sliding_window'
}

initialize(num_layers) {
if (this.cache_type === 'paged') {
return this.createPagedCache(num_layers);
} else if (this.cache_type === 'sliding_window') {
return this.createSlidingWindowCache(num_layers);
}
}

createPagedCache(num_layers) {
// 分页KV缓存 - 更好的内存管理
const cache = {};

for (let i = 0; i < num_layers; i++) {
cache[i] = {
keys: new PageManager(this.max_length),
values: new PageManager(this.max_length)
};
}

return cache;
}

createSlidingWindowCache(num_layers) {
// 滑动窗口缓存 - 固定内存使用
const cache = {};

for (let i = 0; i < num_layers; i++) {
cache[i] = {
keys: new CircularBuffer(this.max_length),
values: new CircularBuffer(this.max_length)
};
}

return cache;
}

update(cache, new_kv, layer_idx) {
if (this.cache_type === 'paged') {
cache[layer_idx].keys.addPage(new_kv.keys);
cache[layer_idx].values.addPage(new_kv.values);
} else if (this.cache_type === 'sliding_window') {
cache[layer_idx].keys.push(new_kv.keys);
cache[layer_idx].values.push(new_kv.values);
}
}
}

// Page管理器
class PageManager {
constructor(max_pages) {
this.max_pages = max_pages;
this.pages = [];
this.free_pages = [];
}

addPage(data) {
if (this.pages.length < this.max_pages) {
this.pages.push(data);
} else {
// 使用LRU替换策略
const page_to_replace = this.free_pages.shift();
this.pages[page_to_replace] = data;
this.free_pages.push(page_to_replace);
}
}
}

// 模型编译器
class ModelCompiler {
constructor() {
this.graph_optimizations = [
'constant_folding',
'dead_code_elimination',
'operator_fusion',
'memory_optimization'
];
}

compile(model) {
// 将模型转换为计算图
const graph = this.convertToGraph(model);

// 应用图优化
let optimized_graph = graph;
for (const opt of this.graph_optimizations) {
optimized_graph = this.applyOptimization(optimized_graph, opt);
}

// 生成高效执行代码
const compiled_model = this.generateCode(optimized_graph);

return compiled_model;
}

convertToGraph(model) {
// 将PyTorch/TF模型转换为中间表示
const graph = new ComputeGraph();

for (const layer of model.layers) {
const node = new ComputeNode(layer.type, layer.params);
graph.addNode(node);
}

// 添加边
for (let i = 0; i < graph.nodes.length - 1; i++) {
graph.addEdge(i, i + 1);
}

return graph;
}

applyOptimization(graph, opt_type) {
switch(opt_type) {
case 'operator_fusion':
return this.fuseOperators(graph);
case 'memory_optimization':
return this.optimizeMemory(graph);
default:
return graph;
}
}
}

性能优化与最佳实践

内存管理优化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// 先进的内存管理系统
class MemoryManagementSystem {
constructor() {
this.memory_pool = new MemoryPool();
this.tensor_recycling = new TensorRecyclingSystem();
this.out_of_core = new OutOfCoreSystem();
}

allocate(shape, dtype = 'float32') {
// 尝试从内存池分配
const tensor = this.memory_pool.allocate(shape, dtype);

if (!tensor) {
// 如果内存池不足,尝试回收
this.tensor_recycling.recycle();

// 再次尝试分配
const tensor2 = this.memory_pool.allocate(shape, dtype);
if (!tensor2) {
// 启用磁盘交换
return this.out_of_core.allocate(shape, dtype);
}
return tensor2;
}

return tensor;
}

free(tensor) {
// 标记为可回收
this.tensor_recycling.markForRecycle(tensor);
}
}

class MemoryPool {
constructor(initial_size = 1e9) { // 1GB
this.pool = new ArrayBuffer(initial_size);
this.free_blocks = [{ start: 0, size: initial_size }];
this.allocated_blocks = [];
}

allocate(shape, dtype) {
const size_needed = this.calculateSize(shape, dtype);

// 寻找合适的空闲块
for (let i = 0; i < this.free_blocks.length; i++) {
const block = this.free_blocks[i];

if (block.size >= size_needed) {
// 分配这个块
const allocated_block = {
start: block.start,
size: size_needed,
shape: shape,
dtype: dtype
};

// 更新空闲块
if (block.size > size_needed) {
this.free_blocks[i] = {
start: block.start + size_needed,
size: block.size - size_needed
};
} else {
this.free_blocks.splice(i, 1);
}

this.allocated_blocks.push(allocated_block);

return this.createTensorView(allocated_block);
}
}

return null; // 内存不足
}

calculateSize(shape, dtype) {
const element_size = this.getElementSize(dtype);
const num_elements = shape.reduce((acc, dim) => acc * dim, 1);
return num_elements * element_size;
}

getElementSize(dtype) {
switch(dtype) {
case 'float32': return 4;
case 'float16': return 2;
case 'int32': return 4;
case 'int8': return 1;
default: return 4;
}
}
}

class TensorRecyclingSystem {
constructor() {
this.recycle_queue = [];
this.recycle_threshold = 0.8; // 内存使用率达到80%时开始回收
}

markForRecycle(tensor) {
this.recycle_queue.push({
tensor: tensor,
timestamp: Date.now(),
ref_count: 0
});
}

recycle() {
// 回收最久未使用的tensor
this.recycle_queue.sort((a, b) => a.timestamp - b.timestamp);

const memory_usage = this.getCurrentMemoryUsage();

if (memory_usage > this.recycle_threshold) {
// 回收一定比例的tensor
const to_recycle = Math.ceil(this.recycle_queue.length * 0.2);

for (let i = 0; i < to_recycle; i++) {
const item = this.recycle_queue.shift();
if (item) {
this.returnToPool(item.tensor);
}
}
}
}

returnToPool(tensor) {
// 将tensor返回到内存池
// 实现细节...
}

getCurrentMemoryUsage() {
// 返回当前内存使用率
// 实现细节...
return 0.5; // 模拟值
}
}

// 混合精度训练
class MixedPrecisionTraining {
constructor() {
this.scaler = new DynamicLossScaler();
this.optimizer = new FP16Optimizer();
}

async forward(model, inputs) {
// 将输入转换为FP16
const fp16_inputs = this.toFP16(inputs);

// 前向传播
const outputs = await model.forward(fp16_inputs);

return outputs;
}

async backward(loss, model) {
// 动态缩放损失
const scaled_loss = this.scaler.scale(loss);

// 反向传播
await scaled_loss.backward();

// 更新缩放因子
this.scaler.updateScale();
}

toFP16(tensor) {
// 转换为半精度
return tensor.to('float16');
}
}

// 动态损失缩放器
class DynamicLossScaler {
constructor(init_scale = 2.0**15, scale_factor = 2.0, scale_window = 2000) {
this.scale = init_scale;
this.scale_factor = scale_factor;
this.scale_window = scale_window;
this.unskipped = 0;
}

scale(loss) {
return loss * this.scale;
}

updateScale() {
this.unskipped += 1;

if (this.unskipped == this.scale_window) {
this.scale *= this.scale_factor;
this.unskipped = 0;
}
}

skipStep() {
// 如果发生溢出,跳过此步骤并降低缩放
this.scale /= this.scale_factor;
this.unskipped = 0;
}
}

总结

  • Transformer架构持续演进,从标准注意力到稀疏注意力和线性注意力
  • MoE架构显著提升了模型能力和效率
  • 长序列处理技术解决了上下文长度限制问题
  • 推理优化大幅提升了生成速度
  • 内存管理优化降低了硬件需求
  • 混合精度训练提高了训练效率
  • 编译器优化进一步提升了性能

2025年的Transformer架构就像一座不断升级的智能大厦,每一层都经过精心设计,既保持了原有结构的稳固,又融入了最新的技术创新,为AI应用提供了更强的支撑。

未来发展

  1. 神经架构搜索: 自动设计最优Transformer结构
  2. 量子加速: 量子计算赋能的Transformer
  3. 生物启发: 更接近人脑的注意力机制
  4. 持续学习: 能够不断学习新任务的Transformer
  5. 能效优化: 更环保的绿色AI架构

扩展阅读

  1. Transformers in 2025: New Architectures and Techniques
  2. Efficient Transformers: A Survey
  3. Mixture of Experts in Modern Neural Networks
bulb